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Particle-based simulations, such as in particle-in-cell (PIC) codes, are widely used
in plasma physics research. The analysis of particle energy transfers, as described
by the second moment of the Boltzmann equation, is often necessary within these
simulations. We present computationally efficient, analytically derived equations for
evaluating collisional energy transfer terms from simulations using discrete particles.
The equations are expressed as a sum over the properties of the discrete particles.

1. Introduction
Particle-based plasma simulations, including particle-in-cell (PIC) codes, are

ubiquitous as a computational tool to understand plasma evolution, aiding research
into nuclear fusion (Roth et al. 2001), proton radiography (Borghesi et al. 2010)
and hadron therapies (Bulanov & Khoroshkov 2002). PIC codes with the ability to
model particle–particle Coulomb collisions have become commonplace (Nanbu 1997;
Sentoku & Kemp 2008; Peano et al. 2009; Schmitz, Lloyd & Evans 2012; Bobylev
& Potapenko 2013), and quantum electrodynamics is the latest area of physics that
they have begun to include (Di Piazza et al. 2012).

The addition of more physical phenomena means that increasingly complex
interplays between different physics drives the overall evolution of plasmas in PIC
simulations. In many applications of PIC, the objective is to understand the important
processes behind an experimental result by running the simulations with similar
conditions. Unravelling the exact interplay which causes particular effects to occur
requires analysing the large amounts of particle-level data which are output by PIC
simulations.

Here, we present a method to aid the analysis of the collisional interactions present
in a PIC simulation. Usually, the collisional terms in the Boltzmann equation can only
be evaluated from PIC output by integration over a six-dimensional phase space in
each cell, which requires careful manipulation of often noisy distribution functions.
These collisional terms are Qs and Rs, which describe the exchange of energy density
in time by species s and the exchange of momentum density in time by species s,
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respectively. We provide a method to evaluate these terms using a simple sum over
the properties of each particle in each cell. This simple sum can, in many case, be
computed far more efficiently than the integration of the six-dimensional phase space.

This paper is organised as follows: § 2 sets out the advantages of this approach;
§ 3 defines the Boltzmann equation and its moments; § 4 states the main result of
the work; § 5 contains the derivation of the results; and § 6 presents a computational
benchmark of the results.

2. Merits of the approach
Evaluating the collisional terms Qs and Rs defined in § 3 directly from distribution

functions as output by PIC simulations requires two steps which can introduce errors.
The first is in calculating continuous, smooth distribution functions from the properties
of a discrete population of particles. This inevitably involves a binning procedure
with a trade-off between resolving features in the distribution function and accepting
noise in the value of fs as a function of v. The proposed method requires no binning.
The second involves performing the integration over the six-dimensional phase space.
As a six-dimensional integration is a computationally intensive procedure, lower-order
integration methods which admit more numerical error may be used. In the equations
specified, only a direct sum over particle properties is required to evaluate Qs and Rs.

The extent of the computational advantage of directly evaluating the collisional
terms, as opposed to performing the integration over phase space, depends upon the
number of particles per cell and the binning procedure. A binning procedure with
B bins per momentum dimension for the particle distribution functions will require
at least O(B6) computer operations in each cell for the evaluation of the collisional
terms. In the equations described in § 4, evaluating the collision terms for N particles
per cell requires O(N2) computer operations. Given a typical B of 100, the direct
evaluation method is more computationally efficient whenever N < B3

≈ 106 particles
per cell.

The computations necessary to calculate Qs and Rs could also be performed at
run-time, as part of the operations of the base code. In this case, the energy and
momentum transferred in each collision can be recorded in-line before and after each
collision. However, widely used PIC codes do not already include this feature, and
it would be an extraneous drain on computer and memory resources for simulations
in which particle kinetics were not specifically of interest. Furthermore, most PIC
modellers are end-users who may prefer not to modify the base code in this way.
The proposed equations require only the output particle data with no modification of
the base code; they can be used in post-processing. They also involve only a single
evaluation per pair of particles (as opposed to a before and after evaluation for each
particle-pair collision in-line).

3. Boltzmann equation
The kinetic equation describing plasma evolution is the Boltzmann equation given

by
∂fs

∂t
+
∂

∂x
· vfs +

qs

ms

∂

∂v
· (E+ v× B)fs =C( fs), (3.1)

where fs is the distribution of particles of species s defined by
ns(xs, t)=

∫
d3v fs(xs, t, vs), with ns the density of species s. Here C( fs)=

∑
s′ C( fs, fs′)

is the collision operator. The labels s and s′ refer to different species. Temperatures
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are expressed in units of energy throughout unless stated explicitly. Henceforth, Latin
letters will refer to particles belonging to a particular species so that i is a particle
of species s and j is a particle of species s′. Greek letters refer to vector and matrix
indices of rank three, i.e. ν,µ, etc., range over 1, 2, 3. In addition, bold font denotes
a vector. Derivatives are denoted by

∂

∂vµ
≡ ∂µ,

∂

∂v′µ
≡ ∂ ′µ, (3.2a,b)

where primed and unprimed relate to species s and s′ respectively.
We utilise the Landau collision operator, which is given by

C( fs, fs′)=−∂ν

∫
d3v′Qνµ

(
∂ ′µ

ms′
−
∂µ

ms

)
fs(vs)fs′(vs′), (3.3)

with collision kernel
Qνµ = χss′Uµν, (3.4)

where

χss′ =
2π

ms
lnΛss′

(
qsqs′

4πε0

)2

(3.5)

can be assumed to be constant including the Coulomb logarithm lnΛ, and

Uµν =

(
u2δµν − uµuν

u3

)
. (3.6)

The relative velocity vector is given by u= v − v′.
The Landau collision operator is a small-angle collision-only approximation to the

full Boltzmann collision operator, meaning that it is obtained by an expansion in
1v and therefore ignores collisions with large scattering angles (Alexandre & Villani
2004). However, the same approximation is used by most, if not all, PIC simulation
collision algorithms, though methods to re-incorporate the collisions lost through this
method are available (Turrell, Sherlock & Rose 2015). For most applications, ignoring
large-angle collisions is valid because scattering via small angles is approximately
8 lnΛ more likely than via large angles.

The evolution of the plasma is described by the moments of the transport equation
with the transport of energy given by the second moment,

∂

∂t

(
3
2

nsTs +
1
2

msnsV2
s

)
+
∂

∂x
·

[
qs +

(
5
2

nsTs +
1
2

nsmsV2
s

)
V s + V s ·Πs

]
− nsqsV s · E−Qs − V s · Rs = 0. (3.7)

The definition of these quantities is as follows, with vrel = v − V s and I the identity
matrix (also denoted by δµν), and v, x, t dependence implicit:

Drift velocity: V s ≡
1
ns

∫
d3v v fs (3.8)

Temperature: Ts ≡
1
ns

∫
d3v

1
3

msv
2
rel fs (3.9)
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Heat flux: qs ≡

∫
d3v

1
2

msv
2
relvrel fs (3.10)

Stress-tensor: Πs ≡

∫
d3vms

(
vrelvrel −

1
3
v2

relI

)
fs (3.11)

Energy density rate: Qs ≡

∫
d3v

1
2

msv
2
rel

∑
s′

C( fs, fs′) (3.12)

Momentum density rate: Rs ≡

∫
d3vmsv

∑
s′

C( fs, fs′). (3.13)

Note that C( fs, fs′) appears in the collisional energy exchange terms Rs and Qs.
PIC simulations explicitly keep track of particles’ positions and velocities so that

within each grid cell a distribution function taking the form of a sum over delta
functions may be defined for each species. Let this be

fs(x, v, t)=
ns(x, t)

Ns

∑
i

δ(v − vi) (3.14)

for vi the velocity of the ith particle of species s, Ns the total number of computational
particles in the space and time element under consideration, and δ(v)= δ(vx)δ(vy)δ(vz).

4. Results
The energy density exchange rate is given by

Qs = 4π lnΛss′
ns′ns

Ns′Ns

(
qsqs′

4πε0

)2 ∑
i

∑
j

1
u3

ij

[
u2

ij

ms
−

ms′ +ms

ms′ms
(vi − V s) · uij

]
(4.1)

and the momentum density exchange rate by

Rs =−4π lnΛss′
ns′ns

Ns′Ns

(
qsqs′

4πε0

)2 ms′ +ms

ms′ms

∑
i

∑
j

uij

u3
ij
, (4.2)

where uij = vi − vj.

5. Derivation
The i and j labels will frequently be implicit in the derivation of the results. For

Greek indices, the Einstein summation convention of summation over repeated indices
is followed. It is assumed that the distribution functions are as defined in § 3. The
following relations are useful,

∂µUµν =−2uν/u3, ∂ ′µUµν = 2uν/u3, (5.1a,b)

∂µ

(
2uµ
u3

)
= 0, ∂ ′µ

(
2uµ
u3

)
= 0. (5.2a,b)

The collision operator is

C( fs, fs′)=−∂ν

∫
d3v′χss′Uµν

(
fs
∂ ′µ

ms′
fs′ − fs′

∂µ

ms
fs

)
(5.3)
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in which the second term, in ∂µfs, may be trivially integrated to give

∂ν
∑

j

χss′Uµν

ns′

Ns′

(
∂µ

ms
fs

)
. (5.4)

Note that there is an implicit i label on the matrix U. The first term, in ∂ ′µfs′ , can be
re-expressed as

−∂ν

∫
d3v′ χss′Uµν

(
fs
∂ ′µ

ms′
fs′

)
=−∂ν

{∫
Γ

[
χss′ n̂µUµν

fs fs′

ms′

]
dΓ −

∫
d3v′ χss′

fs fs′

ms′
∂ ′µUµν

}
,

(5.5)

where n̂µ is the unit normal to the boundary, Γ , of the velocity-space element d3v.
The boundary term vanishes to give

∂ν
∑

j

(
χss′

ns′

Ns′

fs

ms′
2

uν
u3

)
, (5.6)

where the dependence of the relative velocity on j is again implicit. Then

C( fs)=
∑

j

χss′
ns′

Ns′
∂ν

(
2

fs

ms′

uν
u3
+

Uµν

ms
∂µ fs

)
. (5.7)

The energy exchange rate density using this form of the collision operator is

Qs =

∫
d3v

1
2

msv
2
rel

∑
i

χss′
ns′

Ns′
∂ν

(
2

fs

ms′

uν
u3
+

Uµν

ms
∂µ fs

)
, (5.8)

which can be simplified to

Qs =−
1
2

msχss′
ns′

Ns′

∫
d3v

(
2

fs

ms′

uν
u3
+

Uµν

ms
∂µ fs

)
2(vν − Vν), (5.9)

where Vν is the νth component of V s. Let the term in Uµν be denoted by (∗) so that

(∗)=−
1
2

msχss′
ns′

Ns′

{∫
Γ

[
n̂µ2(vν − Vν)

Uµν

ms
fs

]
dΓ −

∫
d3v

2fs

ms
∂µ((vν − Vν)Uµν)

}
(5.10)

and so

(∗) = χss′
ns′

Ns′

∫
d3v fs[(vν − Vν)(−2uν/u3)+Uµµ]

= χss′
ns′

Ns′

∫
d3v

fs

u3
[−2uν(vν − Vν)+ 2u2

]. (5.11)

The full expression is

Qs =
1
2

msχss′
ns′

Ns′

∫
d3v

fs

u3

[
4

u2

ms
− 4

ms′ +ms

ms′ms
(vν − Vν)uν

]
. (5.12)

Evaluating the integral gives the result shown in § 4 for Qs.
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The momentum density rate is given by

Rs =

∫
d3vmsv

∑
j

χss′
ns′

Ns′
∂ν

(
2

fs

ms′

uν
u3
+

Uµν

ms
∂µ fs

)
=

∑
j

msχss′
ns′

Ns′

{∫
Γ

[
vn̂ν

(
2

fs

ms′

uν
u3
+

Uµν

ms
∂µ fs

)]
dΓ

−

∫
d3v

(
2

fs

ms′

uν
u3
+

Uµν

ms
∂µ fs

)
∂νv

}
. (5.13)

The νth component of Rs is then

(Rs)ν =−

∫
d3v

∑
j

msχss′
ns′

Ns′

[(
2

fs

ms′

uν
u3
+

Uµν

ms
∂µ fs

)]
. (5.14)

The second term, in Uµν , yields a contribution in the νth component of

−

∑
j

msχss′
ns′

Ns′

{∫
Γ

[
nµ

Uµν

ms
fs

]
dΓ −

∫
d3v fs∂µ

Uµν

ms

}
=−

∑
j

msχss′
ns′

Ns′

∫
d3v fs

2uν
msu3

, (5.15)

which leads to the result stated in § 4.
Note that the total energy transfer rate per unit volume due to collisions is given

by
ε̇s =Qs + Rs · V s, (5.16)

where the s′ label is implicit, and that∑
s′

ε̇ss′ = 0. (5.17)

6. Benchmark
As a benchmark that the proposed equations give the correct values of the exchange

rate densities, we evaluate the energy exchange density in a case for which there is
a known analytical solution. The scenario is temperature equilibration between two
species of ion with Maxwell–Boltzmann distributions,

fs(v)= ns

(
ms

2πTs

)3/2

exp
[
−

msv
2

2Ts

]
. (6.1)

The particle data used to evaluate Qs according to (4.1) is used to infer the rate of
change of temperature of species s from(

dTs

dt

)
D

≡
2

3kBns
Qs, (6.2)

where the above equation expresses temperature in units of degrees rather than in units
of energy. The data used in (4.1) is taken from a particle Monte Carlo code which
has been benchmarked for thermal equilibration problems (Turrell et al. 2015), and
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FIGURE 1. Results of 0D3V Monte Carlo simulations showing the equilibration rate
ratio between Landau–Spitzer theory and (6.2) averaged over 5/ν0 where ν0 is the initial
equilibration frequency according to theory.

which uses Takizuka and Abe’s collision algorithm (Takizuka & Abe 1977). Particles
populate a single point but have three dimensions in velocity space, a situation
sometimes abbreviated as ‘0D3V’, representing a single cell of a PIC simulation.
Both species’ begin the simulation in equilibrium with themselves, but not with each
other. This is compared with the Landau–Spitzer temperature equilibration rate for
two Maxwell–Boltzmann distributions, which is given by (Spitzer 1967)(

dTs

dt

)
LS

≡ ns′
8
√

π

3

√
2ms

ms′

(
qsqs′

4πε0

)2

lnΛss′

(
Ts +

ms

ms′
Ts′

)−3/2

(Ts − Ts′) (6.3)

in which s 6= s′ and Ts(t= 0) 6= Ts′(t= 0). The derivation of this equation is based on
the Landau collision operator (Trubnikov 1965) in its equivalent formulation in terms
of Rosenbluth potentials (Rosenbluth, MacDonald & Judd 1957). For two ion species
s and s′ at a similar temperature and density, the temperature equilibration times are
in the ratio

τss′

τss
=

ms′

ms

(
ms′ +ms

2ms′

)3/2

(6.4)

so that the intra-species equilibration time is shorter than the inter-species equilibration
time regardless of the masses of the two species (Trubnikov 1965). Therefore,
these species should maintain their own Maxwell–Boltzmann distributions during
equilibration with each other.

The results are shown in figure 1 and are expressed as the ratio of the Landau–
Spitzer equilibration rate to the rate predicted by (6.2) as a function of the initial
temperature ratio between the two ion species. There is excellent agreement between
the theory and the computational estimate (which is also dependent on the resolution
of the simulation) across a large range of temperature ratios.

Figure 1 provides a baseline scenario which uses N = Ns = Ns′ = 3333 as the
number of computational particles of each type of ion, and a computational time step
of 1t = τ0/10. τ0 is τss′(t = 0) = 1/ν0. To show the effects of varying N or 1t on
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FIGURE 2. Results of 0D3V Monte Carlo simulations showing the equilibration rate
ratio between Landau–Spitzer theory and (6.2) averaged over 5/ν0 where ν0 for different
numbers of computational particles.

the quality of the match with Landau–Spitzer theory, they are both varied relative
to this base case. Figure 2 shows that the match is poorer with fewer computational
particles as represented by the specific case of using N/10. This is not a direct
consequence of the equations shown in § 4 but a more general consequence of the
reduction in accuracy when using fewer computational particles because, for example,
the distribution functions of the ions will be more ‘noisy’, and less representative of
the Maxwell–Boltzmann distribution assumed by the Landau–Spitzer theory. However,
using 10N computational particles demonstrates that the equations do converge on
the Landau–Spitzer theory as the computational resolution is increased, and that the
equations presented are accurate.

Similarly, figure 3 shows the effect of varying the computational time step, 1t.
The results are less sensitive to this parameter as neither the Landau–Spitzer rate nor
the equations in § 4 explicitly depend on the computational time step. However, there
is an implicit dependence of the simulations: the (Takizuka & Abe 1977) scattering
routine used in the simulations relies on repeated small-angle collisions between
computational particles with a scattering angle θ chosen from a distribution whose
variance scales as 1t. At large 1t, the scattering angles are no longer guaranteed
to be small and the theory breaks down. Using 1t � τ/10 would cause this to
happen, and indirectly cause the results of evaluating (6.2) to become inaccurate.
Figure 3 demonstrates that for 1t = τ/10, varying 1t by an order of magnitude
largely maintains the accuracy of the equations in § 4.

7. Conclusion
We have derived equations for plasma collisional energy exchange terms which are

less computationally intensive to evaluate than the alternative methods available which
use the output of PIC simulations. They involve a direct sum of the properties of
particles rather than the integration of distribution functions over a six-dimensional
velocity phase space. Results obtained using this method and data taken from particle
simulations are in excellent agreement with the known test case problem of thermal
equilibration, demonstrating that the derived equations are accurate.
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FIGURE 3. Results of 0D3V Monte Carlo simulations showing the equilibration rate
ratio between Landau–Spitzer theory and (6.2) averaged over 5/ν0 where ν0 for different
computational time steps.
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